Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 131059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521338

RESUMO

Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.


Assuntos
Matriz Óssea , Osteogênese , Camundongos , Animais , Humanos , Microesferas , Fósforo , Regeneração Óssea , Alginatos/farmacologia , Alginatos/química
2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(1): 191-198, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38403621

RESUMO

In recent years, bone implant materials such as titanium and titanium alloys have been widely used in the biomedical field due to their excellent mechanical properties and good biocompatibility. However, in clinical practice, bacterial adhesion to the material surface and postoperative infection issues may lead to implantation failure. Based on the antibacterial mechanism, this review elaborated on the antibacterial surface design of titanium implants from the aspects of anti-bacterial adhesion, contact sterilization and photocontrol sterilization. Surface modification of titanium or titanium-based alloy implants with different techniques can inhibit bacteria and promote osseointegration. Thus, the application range of multifunctional titanium-based implants in the field of orthopedics will be expanded.


Assuntos
Antibacterianos , Titânio , Titânio/farmacologia , Propriedades de Superfície , Antibacterianos/farmacologia , Próteses e Implantes , Osseointegração , Ligas
3.
J Biomed Mater Res B Appl Biomater ; 112(2): e35373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359169

RESUMO

Titanium and its alloys have found extensive use in the biomedical field, however, implant loosening due to weak osseointegration remains a concern. Improved surface morphology and chemical composition can enhance the osseointegration of the implant. Bioactive molecules have been utilized to modify the surface of the titanium-based material to achieve rapid and efficient osseointegration between the implant and bone tissues. In this study, the bioactive substance MC3T3-E1 protein-gelatin polyelectrolyte multilayers were constructed on the surface of the titanium implants by means of layer-by-layer self-assembly to enhance the strength of the bond between the bone tissue and the implant. The findings of the study indicate that the layer-by-layer self-assembly technique can enhance surface roughness and hydrophilicity to a considerable extent. Compared to pure titanium, the hydrophilicity of TiOH LBL was significantly increased with a water contact angle of 75.0 ± $$ \pm $$ 2.4°. The modified titanium implant exhibits superior biocompatibility and wound healing ability upon co-culture with cells. MC3T3-E1 cells were co-cultured with TiOH LBL for 1, 3, and 5 days and their viability was higher than 85%. In addition, the wound healing results demonstrate that TiOH LBL exhibited the highest migratory ability (243 ± 10 µm). Furthermore, after 7 days of osteogenic induction, the modified titanium implant significantly promotes osteoblast differentiation.


Assuntos
Osseointegração , Titânio , Polieletrólitos , Titânio/farmacologia , Titânio/química , Gelatina/farmacologia , Próteses e Implantes , Osteogênese , Propriedades de Superfície
4.
J Mech Behav Biomed Mater ; 150: 106342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159494

RESUMO

Skin wound healing will become a pressing and difficult problem following injury to the skin structure. Persistent wounds, in particular, become more vulnerable to bacterial infections, which can contribute to persistent skin inflammation. Therefore, it is critical to create a wound dressing that promotes wound healing while also being antimicrobial. In the present work, a multifunctional biological activity hydrogel formed by enzymatic cross-linking was developed by introducing graphene oxide (GO) and lactoferrin to gelatin hydrogel. Furthermore, by incorporating lactoferrin, the composite hydrogels exhibit excellent in vitro antibacterial and biocompatibility. According to cell experiments, the LTF-GO/Gel hydrogel can improve wound healing by enhancing L929 cell migration. Interestingly, under near-infrared light, LTF-GO/Gel hydrogel increases the generation of singlet oxygen (1O2) and hydroxyl radical (-OH), making the hydrogel system excellent antioxidant and antibacterial capabilities, these results demonstrate that the LTF-GO/Gel hydrogel has clinical promise as a wound dressing for wound healing. In vivo experiments unequivocally establish the capacity of the LTF-GO/Gel hydrogel to expedite wound healing and mitigate inflammation. This hydrogel, therefore, harbors immense potential for applications in wound healing.


Assuntos
Antioxidantes , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Antioxidantes/farmacologia , Antioxidantes/química , Lactoferrina , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Inflamação
5.
J Mech Behav Biomed Mater ; 142: 105884, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148777

RESUMO

For several decades, urinary tract infections caused by catheter-associated devices have negatively impacted not only medical device utilization, but also patient health. As such, the creation of catheter materials with both superior biocompatibility and antibacterial properties has become necessary. This study aimed to produce electrospun membranes based on polylactic acid (PLA) with the incorporation of black phosphorus nanosheets (BPNS) and nano-zinc oxide (nZnO) particles, as well as a mixture of both, in order to design bifunctional membranes with enhanced bioactivity and antibacterial features. The optimum spinning process was determined through examination of various PLA mass concentrations, spinning solution propelling speeds, and receiving drum rotating speeds, with emphasis on the mechanical properties of PLA membranes. Additionally, the antibacterial properties and cytocompatibility of the ZnO-BP/PLA antibacterial membranes were explored. Results demonstrated that the ZnO-BP/PLA antibacterial membranes displayed a rich porous structure, with uniform distribution of nZnO particles and BPNS. With the increase of polylactic acid concentration and the decrease of spinning solution advancing and drum rotation speeds, the mechanical properties of the fiber membrane were significantly improved. Furthermore, the composite membranes exhibited remarkable photothermal therapy (PTT) capabilities when aided by the synergistic effect of BP nanosheets and ZnO. This was achieved through near-infrared (NIR) irradiation, which not only dissipated the biofilm but also enhanced the release capability of Zn2+. Consequently, the composite membrane demonstrated an improved inhibitory effect on both Escherichia coli and Staphylococcus aureus. The results of cytotoxicity and adhesion experiments also indicated good cytocompatibility, with cells growing normally on the surface of the ZnO-BP/PLA antibacterial membrane. Overall, these findings validate the utilization of both BPNS and n-ZnO fillers in the creation of novel bifunctional PLA-based membranes, which possess both biocompatibility and antibacterial properties for interventional catheter materials.


Assuntos
Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Poliésteres/química , Cateteres , Ácido Láctico
6.
MethodsX ; 9: 101600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976750

RESUMO

There is increasing interest to consider dependent failures and human errors in the offshore industry. Permanently abandoned wells dot most of the subsea environment. The nature of a well plugging and abandonment (Well P&A) run - usually the lowest-cost contractor engaged to plug several wells tapping the same reservoir makes it an ideal case study for incorporating failures based on common causes. The heavy use of operators during a cementing job also provides the case for analysis of human error in such tasks. One proposed method to analyse the above-mentioned is the use of Bayesian Belief Networks to achieve the following objectives (1) to capture better estimates of a well PA event by incorporating dependencies, and meet regulatory requirements by authorities; and (2) to use the same model to provide long term monitoring of a group of wells linked by common dependencies. This model has not only captured the dependencies of multiple variables, but also projected it in a dynamic manner to provide a risk profile for the next decade where well integrity failure is likely to happen. • Proposed adapted method capture better estimates of a well PA event by incorporating dependencies • Method allows for extension of model to long term monitoring of a group of wells linked by common dependencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...